Extensions 1→N→G→Q→1 with N=C2 and Q=C22×Dic13

Direct product G=N×Q with N=C2 and Q=C22×Dic13
dρLabelID
C23×Dic13416C2^3xDic13416,225


Non-split extensions G=N.Q with N=C2 and Q=C22×Dic13
extensionφ:Q→Aut NdρLabelID
C2.1(C22×Dic13) = C22×C132C8central extension (φ=1)416C2.1(C2^2xDic13)416,141
C2.2(C22×Dic13) = C2×C4×Dic13central extension (φ=1)416C2.2(C2^2xDic13)416,143
C2.3(C22×Dic13) = C2×C52.4C4central stem extension (φ=1)208C2.3(C2^2xDic13)416,142
C2.4(C22×Dic13) = C2×C523C4central stem extension (φ=1)416C2.4(C2^2xDic13)416,146
C2.5(C22×Dic13) = C23.21D26central stem extension (φ=1)208C2.5(C2^2xDic13)416,147
C2.6(C22×Dic13) = D4×Dic13central stem extension (φ=1)208C2.6(C2^2xDic13)416,155
C2.7(C22×Dic13) = Q8×Dic13central stem extension (φ=1)416C2.7(C2^2xDic13)416,166
C2.8(C22×Dic13) = D4.Dic13central stem extension (φ=1)2084C2.8(C2^2xDic13)416,169
C2.9(C22×Dic13) = C2×C23.D13central stem extension (φ=1)208C2.9(C2^2xDic13)416,173

׿
×
𝔽